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””E“{gaflggiTwo Issues Efftecting tosthe Reliability of
Wireless Sensor Networks

1. Sensors that run on batteries have limited energy reserves,
€.g., may run on two AA batteries.

2. Enemy agents may sabotage network.



Cincinnati Energy conservation

In many WSN applications, using and replacing batteries 1s
impractical. Often the sensor nodes are located in
unrecoverable locations. Furthermore, the labor and costs
associated with changing hundreds, 1f not thousands, of
batteries outweighs the ROI (Return on Investment) that
the sensor network could deliver.

Thus 1t 1s important to conserve energy when routing.



uuuuuuuuuuuu @

Cincinnati _ Multi-hop routiy




" Cincmngti Vlulti-hop routing sayesspower

Power required for sensor 4 to reach sensor B 1s a quadratic
function of the distance between 4 and B. Thus, a
sequence of smaller transmissions to intermediate nodes
requires less total power than a direct communication.
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® Designing and analyzing fault-tolerant networks

» networks with the ability to survive (remain connected)
even 1f there are sensors/node failures throughout the
network.

* Routing schemes for gather, broadcast and point-to-
point communication that involve routing along multiple
node-disjoint paths.

» Such schemes that can detect and circumvent enemy
agent that 1s trying to disrupt the routing scheme.
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Cincinnailomogeneous vs. heterogeneous sensor

networks?

* Homogeneous Sensor Networks:
» All nodes transmit with same power

» Jdentical transmission radius — inefficient

* Heterogeneous Sensor Networks:
= Each node has its own transmission radius

* How to assign radius?



"ot Lraditional k-conneetivity

* A network is k-connected if it remains connected even
after the deletion of any &k nodes.

* Equivalently, 1t 1s k-connected if there are k pair-wise
disjoint paths joining any pair of nodes.
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Dominating Connected
Set Dominating Set




" Cincinnati New concepl

Dominating k-connectivity

We will say that a network 1s dominating k-connected
if, after the simultaneous failure of at most £ — 1 nodes
in the neighborhood of any surviving node, the
surviving nodes form a connected dominating set.



“”'E“iﬂggi‘ggi Dominating k-conneetivity vs.

traditional A-connectivity

Dominating k-connectivity 1s a much stronger connectivity
property than k-connectivity.

However, we show via theoretical results and empirical
testing that to achieve dominating k-connectivity in a
heterogeneous sensor network requires only a small
increase in the radi of transmission over that required for
k-connectivity.
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Cincinnagti  Dominating k-conneeted to a sink node

We say that a network 1s dominating k-connected to a
sink node s, 1f the network 1s able to resist simultaneous
node failures throughout the network and still remain
connected to the in-neighborhood of s, provided that at
most & — 1 nodes have failed in the out-neighborhood of
any surviving node.

Thus, a network 1s dominating A-connected iff it is
dominating k-connected to every node.



l@ K-bounded subset

Cincinnati

A k-bounded subset G[U] 1s one where every node in U 1s
adjacent to at most £ — 1 nodes not in U.

Thus, a digraph is dominating k-connected to s iff every k-
bounded set U induces a subgraph G[U] that contains a
directed path from each node of u in U to the in-
neighborhood of s.



”"E“{HE{,}&gi Characterizationsef"dominating k-

connected networks

Theorem 1: Let ¢ = (V, E') be a digraph, and suppose s
is any node of . Then, & is dominating k-connected to s
if and only if there exists a linear ordering of the vertices,
such that each node v different from s, either contains s in
its out-neighborhood. or contains at least & nodes in its out-
neighborhood that are smaller than v with respect to the linear
order.
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Since there are at most £ — 1 neighbors of u that do not lie in U,

there 1s at least one node u; < u. Applying the same argument with
u,, there exists a node u, in U such that u, < u,. Continuing in this

way, we obtain a sequence

U=u)p = ... > U

Since the nodes in the sequence are successively smaller in the
linear order and eventually a node 1n the in-neighborhood of s

must be reached.
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A subset A of V has the k-smaller property if there exists a
labeling L of the nodes in A, such that for each node a in A4 that 1s
not in the in-neighborhood of s, there exists at least £ nodes in the
out-neighborhood of a that belong to A and have a strictly smaller
label than a.



o Proof of Theorem L.(only if)

Cincinnati

Consider a set 4 of maximum size having the k-smaller property,
and consider the set U = 4.

We will show that U 1s empty, so that 4 = V. Assume to the
contrary that U 1s not empty.

Suppose u in U 1s joined to at least k£ nodes not in U. Then, by
assigning u a label greater than any label on the nodes of A the
set A + u would have the k-smaller property contradicting the
maximality of 4. Thus, U is k-bounded.

But, since 4 = V\U contains the in-neighborhood of s, G[U] 1s not
connected to the in-neighborhood of s, contradicting the fact that
G 1s dominating k-connected to s. Hence, 4 = V.



o (( Dominating Connectivity
Cincinnati

Dominating connectivity to a sink node s 1s the maximum k for
which D 1s dominating k-connected.

Dominating connectivity of D 1s the maximum k for which D
is dominating k-connected.
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procedure Dominating ConnectivitytoSink
Input: Graph GG = (V, E') having n nodes
Output: Dominating connectivity x4 to a sink node s in GG

[ A = N;,(s) U{s}

2. Kg =N

3. while A # V do

4. for each node u € V\ A do

5. é(u) = number of edges ua such that a € A
6. endfor

7. b=anode u < V\A that maximizes €(u)

8. A=AU{b}

9 s = min{ks, €(b)}

10. endwhile
[1. end DominatingConnectivitytoSink



Cmcurllggt] Algorithm for Optimal-Radii Assignment

procedure Optimal DCRadiustoSink

Input: A distance function d mapping V' x V to the real
numbers, representing distances between sensors, where one
sensor s is designated as the sink, and a positive integer &
Output: Optimal transmission radius assignment r, such that
the associated network is dominating %k-connected to s

l. A ={s}

2. r(s) =20

3. while A # V' do

4. for each node v € V\ A do

5. M(u) = min{d(u,s), di(u, A)}

6. endfor

7. b = anode u € V\A that minimizes M (u)
8. r(b) = M(b)

0. A =AU {b}

10. endwhile

1. endfor
end OprimalDCRadiustoSink
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Theorem 2: Let G = (V, E') be a digraph that is strongly
connected. Then the k' power G* of G is dominating k-
connected.
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Theorem 4: The k-expansion the network M resulting from
placing sensors at the points of a square two-dimensional mesh
in the plane, i.e., at the points {(7,j)|i,7 € {0,1,...,q}},
satisfies

ex(M) < V2|Vk+ .5].
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K | Max Expn Dom | Avg Expn Dom | Avg Expn Degree
I 1 1 0.918163
2 1.50768 1.19746 1.115463
3 1.66048 1.35657 1.270327
4 2.12019 1.50813 1.436498
5 2.21503 1.59920 1.528536
6 2.24924 1.72023 1.653984
7 2.32857 1.81776 1.737909
8 2.54519 1.89741 1.824917
9 2.67664 2.01218 1.922366
10 2.68461 2.09472 2.018564
20 3.67839 2.87293 2.825125
3 4.30078 347126 3.424622
40 4.99854 4.00779 3.952914
50 5.68990 4.45570 4.388446
60 6.28236 4.86740 4794621
70 6.78365 5.29621 5.221444
80 7.15769 5.62992 5.547579
90 7.68274 5.99429 5.906015
100 8.10678 6.31972 6.223447

TABLE 1
EXPANSION VALUE STATISTICS FOR ACHIEVING DOMINATING
k-CONNECTEDNESS, WHERE THE SECOND AND THIRD COLUMNS FROM
THE LEFT CORRESPOND TO THE MAXIMUM AND AVERAGE EXPANSION,
RESPECTIVELY, NEEDED TO INDUCE A DOMINATING k-CONNECTED
NETWORK AND THE FOURTH COLUMN CORRESPONDS TO THE AVERAGE
EXPANSION NEED TO INDUCE A NETWORK OF MINIMUM DEGREE k.



