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MOTIVATION: HOW TO TAKE INTERNET TO THE VILLAGES. . .

• . . . without wires?

• Idea: Provide the houses with wireless devices and put a
central antenna that communicates them with the world.

• Similar to mobile phones, but without direct connection to the
central antenna: multi-hops.
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THE RULES OF THE GAME

• Rule #0: Universal clock.

• Rule #1: In a given round, a device either receives or transmits.

• Rule #2: A device can transmit only one piece of information
per round.

• Rule #3: Devices transmit up to a distance dT .

• Rule #4: If u transmits and d(u, v) ≤ dI , then v cannot receive
from a third node w 6= u (interference is call-to-call).
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THE RULES IN A PICTURE

dI = 2, dT = 1
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THE MODEL

• A graph G = (V, E), a sink t ∈ V and two numbers dI , dT . For
any u ∈ V , a number of messages w(u).

• We construct:
– the transmission digraph

GT = GdT = (VT = V, ET = {(u, v) : d(u, v) ≤ dT }) (e ∈ ET

is said a call), and
– the interference graph

GI = (VI = ET , EI = {[e, f ] : e and f interfere}.

• A valid round is an independent set of GI (i.e. a set of calls that
are non-interfering).

• GOAL: Find a sequence of rounds that routes all the messages
up to the sink in minimum time (number of rounds). We call
g(G, t) such a minimum.
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THE MODEL — A FIGURE
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If dI = dT = 1, a round may consist of the three calls
(a, b), (d, c), (e, f), while if dI = 2, then (e, f) interferes with (a, b)

and (d, c) (if the three calls take place, only c receives!). A round
may consist of a single call or the calls (a, b) and (d, c).
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FOR THE CURIOUS: WHAT ABOUT personalized broadcasting?

> dI

> dI

> dI

> dI
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RELATED WORK

• J.-C. Bermond and J. Peters (Algotel 2005): Optimal protocols
for gathering into the center of the 2D-Grid, when dT = 1.

• J.-C. Bermond, R. Correa, J. Yu (CIACC’06): Very good
(sometimes optimal) protocols in the path.

• —: For a related model, general flow demands f(u, v).
NP-Hardness and Approximation. Optimal strategies for the
path and trees. PTAS for Euclidean graphs and subsets of the
grid.
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OUR RESULTS

• Hardness: In general, the problem is NP-COMPLETE. Actually,
if dI > dT it does not admit a FPTAS. (Approximate with
quality ε requires time that is exponential on 1/ε.)

• Approximation: General algorithm + General lower bound ⇒

4-Approximation.

• Good protocols for specific cases.
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HARDNESS — NO FPTAS WHEN dI = 2, dT = 1

• Given a graph G that we want to color, we construct an
auxiliary graph Ḡ as follows
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t

G Ḡ

• Key fact: The calls (x, x′), (y, y′) are compatible if and only if
x, y are independent in G.

• If (∀x) w(x) = w(x′) = 1, it follows that g(Ḡ) = χ(G) + 2n.
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APPROXIMATION — GENERAL LOWER BOUND

• There exists a bottleneck close to the sink, in which at most one
message can be received per round. Therefore, each message
must travel this section alone.(*)

• For instance if we focus on balls of radius rc centered at the
sink, (*) is true for rc ≤

⌊

dI−dT

2

⌋

.

• We get that g(G, t) ≥
∑

u∈Γrc

w(u)d(u,t)
dT

+ 1+rc

dT

∑

u6∈Γrc
w(u)

• Very roughly (not true): g(G, t) ≥ dI−dT +1
dT

W (G), W (G) being
the total number of messages.
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APPROXIMATION — ALGORITHM FOR THE PATH

• We take a path Pn = {0, . . . , n − 1}, vertex i connected with
vertex i + 1, sink t = 0.

• We divide Pn into intervals of length dI + dT + 1, so

I0 = {1, 2, 3, . . . , dI + dT + 1},

I1 = {dI + dT + 1, dI + dT + 2, . . . , 2(dI + dT + 1)}

Ik = {k(dI + dT + 1) + p}dI+dT +1
p=1 .

• Main idea: pipeline. Every interval transmits one message to
the previous one in about (dI + dT + 1)/dT rounds.
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ALGORITHM FOR THE PATH

dT

I3

dI + dT + 1

I1I0 I2

It follows that g(Pn, t = 0) ≤ dI+dT +1
dT

W (G). (Again, roughly, not
true.)
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ALGORITHM FOR GENERAL GRAPHS

Exactly the same idea can be applied in a general graph, if we
consider interval k defined as the vertices x such that

k(dI + dT + 1) < d(x, t) ≤ (k + 1)(dI + dT + 1)

I1

I0

I2

dI +dT +1

It follows the same bound that for the path!
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ANALYSIS OF THE ALGORITHM

• The rough analysis:

approx. ratio of alg. ≤
dI+dT +1

dT

W (G)
dI−dT +1

dT

W (G)
≤ 4.

• The actual proof has several cases, considers separately the
weight of Γrc , takes care about empty intervals, etc, etc.

• The bound is 4 independent of dI , dT , but for many cases the
value is smaller. In particular, the ratio goes to 2 as dT /dI → 0.
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BETTER RESULTS FOR SPECIFIC CASES

• We say that a protocol A is nearly optimal if the gap with respect
to the optimum value does not increase with the size of the
network. (A(G, t) − g(G, t) ≤ C = C(dI , dT ).)

• The path. The algorithm above described is nearly optimal.

• Balanced stars, in the uniform case:
– Nearly optimal protocols by, either improving the lower

bound (2 branches) or using a better algorithm
(parallelizing).

– Attain the general lower bound.
– Show that the analysis of the algorithm is tight

(4-approximation).

• What applies to balanced stars is true for the 2D-grid.

21



THANK YOU !
MERCI !

GRACIAS !
GRAZIE !

22



BANDWIDTH ALLOCATION IN CLASSICAL NETWORKS

spacifies the desired
traffic from u to v

A function f(u, v)
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- 1 wants 3 units from 3
- 2 sends 2 units to 7
...

Traffic demands:
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9
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BANDWIDTH ALLOCATION IN CLASSICAL NETWORKS

spacifies the desired
traffic from u to v

A function f(u, v)
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- 1 wants 3 units from 6
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BANDWIDTH ALLOCATION IN RADIO NETWORKS

spacifies the desired
traffic from u to v

A function f(u, v)
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- 1 wants 3 units from 6
- 4 sends 6 units to 7
...

Traffic demands:
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BANDWIDTH ALLOCATION IN RADIO NETWORKS
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