Hardness and Approximation of gathering in radio networks

Jean-Claude Bermond, Jérome Galtier, Ralf Klasing, Nelson Morales, Stephane Perennes.
\{jean-claude.bermond, nelson.morales, stephane.perennes\}@sophia.inria.fr
klasing@labri.fr, jerome.galtier@francetelecom.fr

Project MASCOTTE - INRIA/I3S/CNRS
European project AEOLUS
CONICYT/INRIA Sophia-Antipolis
CRC CORSO funded by France Télécom R \& D, on Design of
Telecommunication networks, fault tolerance and radio networks.

CONTENTS

- Motivation.
- The Model \& The Problem.
- Results.
- Proof drafts.
- Conclusions.

Motivation: How to take Internet to the villages...

- ... without wires?
- Idea: Provide the houses with wireless devices and put a central antenna that communicates them with the world.
- Similar to mobile phones, but without direct connection to the central antenna: multi-hops.

TAKING INTERNET TO VILLAGES

TAKING INTERNET TO VILLAGES

TAKING INTERNET TO VILLAGES

TAKING INTERNET TO VILLAGES

The rules of the game

- Rule \#0: Universal clock.
- Rule \#1: In a given round, a device either receives or transmits.
- Rule \#2: A device can transmit only one piece of information per round.
- Rule \#3: Devices transmit up to a distance d_{T}.
- Rule \#4: If u transmits and $d(u, v) \leq d_{I}$, then v cannot receive from a third node $w \neq u$ (interference is call-to-call).

The rules in a picture

$d_{I}=2, d_{T}=1$

The Model

- A graph $G=(V, E)$, a sink $t \in V$ and two numbers d_{I}, d_{T}. For any $u \in V$, a number of messages $w(u)$.
- We construct:
- the transmission digraph

$$
G_{T}=G^{d_{T}}=\left(V_{T}=V, E_{T}=\left\{(u, v): d(u, v) \leq d_{T}\right\}\right)\left(e \in E_{T}\right.
$$

is said a call), and

- the interference graph

$$
G_{I}=\left(V_{I}=E_{T}, E_{I}=\{[e, f]: e \text { and } f \text { interfere }\} .\right.
$$

- A valid round is an independent set of G_{I} (i.e. a set of calls that are non-interfering).
- GOAL: Find a sequence of rounds that routes all the messages up to the sink in minimum time (number of rounds). We call $g(G, t)$ such a minimum.

The Model - A figure

If $d_{I}=d_{T}=1$, a round may consist of the three calls $(a, b),(d, c),(e, f)$, while if $d_{I}=2$, then (e, f) interferes with (a, b) and (d, c) (if the three calls take place, only c receives!). A round may consist of a single call or the calls (a, b) and (d, c).

FOR THE CURIOUS: WHAT ABOUT personalized broadcasting?

RELATED WORK

- J.-C. Bermond and J. Peters (Algotel 2005): Optimal protocols for gathering into the center of the 2D-Grid, when $d_{T}=1$.
- J.-C. Bermond, R. Correa, J. Yu (CIACC'06): Very good (sometimes optimal) protocols in the path.
- -: For a related model, general flow demands $f(u, v)$. NP-Hardness and Approximation. Optimal strategies for the path and trees. PTAS for Euclidean graphs and subsets of the grid.

OUR RESULTS

- Hardness: In general, the problem is NP-COMPLETE. Actually, if $d_{I}>d_{T}$ it does not admit a FPTAS. (Approximate with quality ϵ requires time that is exponential on $1 / \epsilon$.)
- Approximation: General algorithm + General lower bound \Rightarrow 4-Approximation.
- Good protocols for specific cases.

HARDNESS - No FPTAS When $d_{I}=2, d_{T}=1$

- Given a graph G that we want to color, we construct an auxiliary graph \bar{G} as follows

- Key fact: The calls $\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)$ are compatible if and only if x, y are independent in G.
- If $(\forall x) w(x)=w\left(x^{\prime}\right)=1$, it follows that $g(\bar{G})=\chi(G)+2 n$.

Approximation - General lower bound

- There exists a bottleneck close to the sink, in which at most one message can be received per round. Therefore, each message must travel this section alone. ${ }^{*}$)
- For instance if we focus on balls of radius r_{c} centered at the sink, $\left(^{*}\right)$ is true for $r_{c} \leq\left\lfloor\frac{d_{I}-d_{T}}{2}\right\rfloor$.
- We get that $g(G, t) \geq \sum_{u \in \Gamma^{r_{c}}} \frac{w(u) d(u, t)}{d_{T}}+\frac{1+r_{c}}{d_{T}} \sum_{u \notin \Gamma^{r_{c}}} w(u)$
- Very roughly (not true): $g(G, t) \geq \frac{d_{I}-d_{T}+1}{d_{T}} W(G), W(G)$ being the total number of messages.

Approximation - Algorithm for the path

- We take a path $P_{n}=\{0, \ldots, n-1\}$, vertex i connected with vertex $i+1, \operatorname{sink} t=0$.
- We divide P_{n} into intervals of length $d_{I}+d_{T}+1$, so

$$
\begin{aligned}
I_{0} & =\left\{1,2,3, \ldots, d_{I}+d_{T}+1\right\} \\
I_{1} & =\left\{d_{I}+d_{T}+1, d_{I}+d_{T}+2, \ldots, 2\left(d_{I}+d_{T}+1\right)\right\} \\
I_{k} & =\left\{k\left(d_{I}+d_{T}+1\right)+p\right\}_{p=1}^{d_{I}+d_{T}+1}
\end{aligned}
$$

- Main idea: pipeline. Every interval transmits one message to the previous one in about $\left(d_{I}+d_{T}+1\right) / d_{T}$ rounds.

Algorithm for the path

It follows that $g\left(P_{n}, t=0\right) \leq \frac{d_{I}+d_{T}+1}{d_{T}} W(G)$. (Again, roughly, not true.)

Algorithm for general graphs

Exactly the same idea can be applied in a general graph, if we consider interval k defined as the vertices x such that

$$
k\left(d_{I}+d_{T}+1\right)<d(x, t) \leq(k+1)\left(d_{I}+d_{T}+1\right)
$$

It follows the same bound that for the path!

AnAlysis of The algorithm

- The rough analysis:

$$
\text { approx. ratio of alg. } \leq \frac{\frac{d_{I}+d_{T}+1}{d_{T}} W(G)}{\frac{d_{I}-d_{T}+1}{d_{T}} W(G)} \leq 4
$$

- The actual proof has several cases, considers separately the weight of $\Gamma^{r_{c}}$, takes care about empty intervals, etc, etc.
- The bound is 4 independent of d_{I}, d_{T}, but for many cases the value is smaller. In particular, the ratio goes to 2 as $d_{T} / d_{I} \rightarrow 0$.

BETTER RESULTS FOR SPECIFIC CASES

- We say that a protocol A is nearly optimal if the gap with respect to the optimum value does not increase with the size of the network. $\left(A(G, t)-g(G, t) \leq C=C\left(d_{I}, d_{T}\right)\right.$. $)$
- The path. The algorithm above described is nearly optimal.
- Balanced stars, in the uniform case:
- Nearly optimal protocols by, either improving the lower bound (2 branches) or using a better algorithm (parallelizing).
- Attain the general lower bound.
- Show that the analysis of the algorithm is tight (4-approximation).
- What applies to balanced stars is true for the 2D-grid.

THANK YOU! MERCI!
 GRACIAS! GRAZIE!

BANDWIDTH ALLOCATION IN CLASSICAL NETWORKS

Traffic demands:
A function $f(u, v)$

- 1 wants 3 units from 3 spacifies the desired traffic from u to v

BANDWIDTH ALLOCATION IN CLASSICAL NETWORKS

Traffic demands:

- 1 wants 3 units from 6
-4 sends 6 units to 7

A function $f(u, v)$ spacifies the desired traffic from u to v

Traffic demands:

- 1 wants 3 units from 6
-4 sends 6 units to 7

A function $f(u, v)$ spacifies the desired traffic from u to v

BANDWIDTH ALLOCATION IN RADIO NETWORKS

BANDWIDTH ALLOCATION IN RADIO NETWORKS

BANDWIDTH ALLOCATION IN RADIO NETWORKS

BANDWIDTH ALLOCATION IN RADIO NETWORKS

