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Original Points and Vertices Problem

Given a graph G=(V,E),
Throw |V| points onto the vertices of G by means
of the random uniform distribution
The problem consists in remapping the points on 
G in such a way that each vertex contains exactly  
1 point, while minimizing the maximum distance   
ρ(G) that any point has to move on the edges  
of G.
The aim is to bound the random variable ρ(G)



Remark 1
There are many similarities with the well-known Balls 
into Bins problem (see [2,3,13])
The main difference resides, in fact, in the added 
structural properties of the Bins (Vertices) since they are 
connected by the graph’ edges so that the Balls (Points) 
cannot be moved as desired but following the graph 
paths
Moreover, in the Balls and Bins problem, usually the aim 
is to study the distribution of the most loaded bin. In the 
Point and Vertices the aim is to study the accumulation 
on several vertices not just one
Another interesting way of viewing the problem is in the 
opposite way of discrepancy since it captures in a 
natural way the “distance” between randomness of the 
thrown points and the order of the graph’ vertices



Example on a Grid
Each Grid vertex is 
represented by a circle 
whose radius is 
proportional to the 
thrown points inside it.
The arrows represent 
the movements 
performed over the grid
The final setting is a 
1:1 matching between 
points and vertices



In [10,14,15] by P.Shor et al. 1986 - 1991, 
the relation between two basic structures like Uniform Random points 
and d-dimensional Grid vertices was studied. The expected minimax
grid matching evaluated distance is 

ρ(G) = Θ(            )   for d = 2,
ρ(G) = Θ(             )   for d > 2

In [9] by R. Klasing et al. 2005,
#P-hardness for the general case
A Fully Polynomial Randomized Approximation Scheme when the graph 
admits a polynomial-size family of witness cuts
ρ(G) = O(     ) w.h.p. for any connected graph G
A greedy algorithm that remaps the points on any tree T with 
remapping distance ρ (T)≤ 2ρ(T)
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Original Points and Vertices Problem

Given a graph G=(V,E),
Throw |V| points onto the vertices of G
by means of the random uniform distribution
The problem consists in remapping the points on 
G in such a way that each vertex contains exactly  
1 point, while minimizing the maximal distance   
ρ(G) that any point has to move on the edges  
of G.
The aim is to bound the random variable ρ(G)

Unbalanced Points and Vertices Problem

G in such a way that each vertex contains at most

Given a graph G=(V,E), and a number 0<ε<1
Throw (1-ε)|V| points onto the vertices of G

■
■



Motivations and Possible Scenarios
Coverage issues

Robotics, Equidistant formation
Wireless Networks

Given an area of interest that can be partitioned in a set S of sub-areas such 
that |S| = n, and a set D of devices such that |D| = (1−ε)n, the goal is to 
minimize the spent transmission range and/or energy needed for movements 
of the devices in order to monitoring as much sub-areas as possible

Vertex Capacity
Given n sensors distributed over a graph of n vertices it is possible to 
consider, as in reality, base stations (graph vertices) that can handle many 
sensors, i.e., capacity for each grid vertex hence obtaining an unbalanced 
version of the Points and Vertices

Hierarchy
Given a variety of sensors with different capabilities like GPS, AOA, 
Thermometer and so on, the idea is to spread each type of sensor as much 
as possible hence solving several time the Unbalanced Points and Vertices 
problem



Theorem: ρ(G)=Θ(           )  w.h.p.

Sketch of the proof [upper bound]:
• Partition the grid into subgrids (boxes) containing, on average, 
cεlog n points, i.e.,             vertices, for some constant cε
• Let Xi be the number of random points belonging to the i-th box 
(the points can be rearranged in such a box whenever 
Xi ≤ )
•From Chernoff [7] we have: 
•Hence for             , Pr[Xi cannot be rearranged locally] ≤ 1/n
•The claim holds by observing that there are Θ(n / log n) boxes 
and the diameter of each one is 

•An easy but not tight lower bound can be derived from [5] in 
the case of (1+ε)n bins and n balls 

d-dimensional Grids
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Trees
To each leaf we associate a label 
-1 if there are no points inside.
0 if there is one point, 

p-1 times +1 if there are p points. 

For each labelled subtree but its root, let s be 
the difference among positive and negative 
labels in its sons.
If s>0 we label the root with the smallest s-1
positive numbers contained in the previous 
labels increased by 1 and a +1 for each point 
contained in it. 
If s≤0, let s' be the number of points contained 
in the root. 

If s'>|s| then we label the root with s'+s-1 
times +1 (hence with 0 if s'+s-1=0); 
if s'<|s| then with the biggest |s|-s'-1
negative numbers contained in the
previous labels decreased by 1 and a -1; 
if s'=|s| just with a -1

Among all the labels we look for the 
absolute biggest one (M=3 in the 
example). It holds ρ(T)≥M, and by 
means of matching arguments we 
achieve a 2-approximation 
algorithm



Other Results

d-dimensional Grid G:
ρ(G)=Θ(           )  w.h.p.

Tree T:
2-approxiamtion algorithm

d-dimensional Hypercubes H:
ρ(H)=Θ(1)

Paths P:
ρ(P)=Θ(log n)

General Graph G:
ρ(G)=O(log n)

d nlog



Remark 2

The grid remains the structure for which more deep 
techniques were required in order to obtain the bound
Bounds for other topologies were more simple to derive, 
some of them are based on the grid method
For trees, similar arguments to the 2-approximation 
algorithm proposed in [9] hold
It is worth noting that for general graphs the value of ρ(G)
is now O(log n) instead of O(     ) of the balanced version; 
This reveals a more local behavior of the random 
variable ρ(G). This strengthens the fact that the 
unbalanced version is much more suitable for distributed 
environments like in the case of Sensor Networks

n



Conclusion
We have proposed a variant of the Points and Vertices 
Problem by unbalancing the ratio between points and 
vertices
We have derived several bounds for the remapping 
function among the points and vertices according to 
different topologies of the underlying graph
The new remapping distance turned out to be much more 
local than the original one hence much more suitable for 
distributed environments
As future work, an interesting direction could be to 
investigate the case in which the final setting of the points 
is not just one per vertex but it also preserves connectivity 
as much as possible



References
[2] R. Cole, A. M. Frieze, B. M. Maggs, M. Mitzenmacher, A. W. Richa, R. K. Sitaraman, and 

E. Upfal. On balls and bins with deletions. In Proceedings of the 2nd International 
Workshop on Randomization and Approximation Techniques in Computer Science, pages 
145–158. Springer-Verlag, 1998.

[3] E. Drinea, A. Frieze, and M. Mitzenmacher. Balls and bins models with feedback. In 
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 
pages 308–315. Society for Industrial and Applied Mathematics, 2002. 

[9] R. Klasing, Z. Lotker, A. Navarra, and S. Perennes. From Balls and Bins to Points and 
Vertices. In Proceedings of the the 16th Annual International Symposium on Algorithms 
and Computation (ISAAC), volume 3827 of Lecture Notes in Computer Science, pages 
757–766. Springer-Verlag, 2005.

[10] F. T. Leighton and P. W. Shor. Tight bounds for minimax grid matching with 
applications to the average case analysis of algorithms. Combinatorica, 9(2):161–
187, 1989.

[13] M. Raab and A. Steger. “Balls into bins” - a simple and tight analysis. In 
Proceedings of the 2nd International Workshop on Randomization and Approximation 
Techniques in Computer Science, pages 159–170. Springer-Verlag, 1998.

[14] P. W. Shor. The average-case analysis of some on-line algorithms for bin 
packing. Combinatorica, 6(2):179–200, 1986.

[15] P. W. Shor and J. E. Yukich. Minimax Grid Matching and Empirical Measures. The 
Annals of Probability, 19(3):1338–1348, 1991.


