Complexity of Scheduling in Multihop Wireless Networks

Gaurav Sharma

Center for Wireless Systems and Applications (CWSA) Purdue University

Joint work with: Ness B. Shroff and Ravi R. Mazumdar

Multi-hop Wireless Networks

Characteristics:

- Mutual interference between scheduled links
 variable link capacities
- Capacity region of the network depends on routing, link activation and power allocation
- Coupling across multiple layers of the protocol stack

Efficient operation of such networks requires a cross-layer design approach!

Cross Layer Design

- Optimize jointly across multiple layers of the protocol stack
 - Joint rate control, routing, and scheduling
- Cross layer problems exhibit a nice decoupling property (see, for example, [Lin & Shroff, CDC 2004])
- The scheduling component is the central and most difficult element of all cross layer optimization frameworks

Cross Layer Scheduling Problem

The cross layer scheduling problem is

- No simple characterization possible even for u(P) in terms of P!
- What to do?

March 13, 2006

Imperfect Scheduling Schemes

- Scheduling schemes that are within some factor of the optimal
- S_β-scheduling schemes: Schemes that are guaranteed to choose a rate vector s that satisfies:

$$\sum_{l=1}^{L} q_l s_l \ge \beta \max_{r \in u(P), P \in \Pi} \sum_{l=1}^{L} q_l r_l$$

 Using a S_β-scheduling scheme in the cross layer framework one can achieve a capacity region of β times the optimal [Lin and Shroff, INFOCOM 2005]

Wireless Network Model

Fixed transmission powers

- Each node transmits at some fixed power level when scheduled
- The power level can differ across nodes
- This reduces the cross layer scheduling problem to a combinatorial optimization problem
 - Still quite difficult to solve requires centralized control!

Interference Models

K-hop interference models

- Limits interference to K hops
- Links within K hops of each other cannot be scheduled to transmit at the same time

Consider only bidirectional links

 Required by most current network and transport layer protocols

K-hop Interference Models

K=1: Node Exclusive Interference Model

K=2: Models the RTS/CTS based communication scheme of IEEE 802.11

Terminology

- Model the wireless network as an undirected graph G=(V,E)
 - V is the set of nodes
 - E is the set of edges/links
- A subset of edges M ⊆ E is called a K-Valid Matching if and only if all edges in M are at least K hops apart from each other
 - Matching = 1-valid matching

Resulting Class of Problems

 Maximum Weighted K-Valid Matching problem (MWKVMP)

 Unweighted Version: Maximum K-Valid Matching Problem (MKVMP)

What value of K is optimal?

- The optimal value of K depends on many factors
 - Node density
 - Physical layer
 - For IEEE 802.11 networks (DSSS PHY), K = 2 seems to be the best choice
 - For EDGE networks, K=3 performs better than K=2 for a wide range of node densities
 - The ability to perform rate control also effects optimal K

Hardness Results

- MKVMP (decision version) is NP-Hard for K
 >1
 - Main Idea: Reduction from 3-CNF-SAT to MKVMP

CNF – conjunctive normal form

 A formula is in 3-CNF if it is AND of one or more clauses, each of which is an OR of exactly three distinct literals

Example:

Clause 1

 $\Phi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$

March 13, 2006

FAWN 2006

Hardness Proof

Consider K=2Gadget used for a clause

 $\Phi = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$

- Let η be such that $(|V| + K |E|)^{\eta} = \Theta(V)$.
- MKVMP for K > 1 is not approximable within
 - $|V|^{\eta/2-\epsilon}$ for any $\epsilon > 0$, unless NP = P
 - $|V|^{\eta-\epsilon}$ for any $\epsilon > 0$, unless NP = ZPP
- Note: Sparse graphs are not good!
- Proof Technique: Reduction from Maximum Independent Set Problem (MISP) to MKVMP

Approximability Results (Contd.)

• MWKVMP is approximable within $\Theta\left(\frac{|E|}{(\log E)^2}\right)$

 Proof Technique: Reduction from MWKVMP to Vertex Weighted Maximum Independent Set problem (VWMISP)

Greedy Approach

Greedy Weighted K-Valid Matching Algorithm $(G = (V, E), w : E \to \mathbb{R}, M)$ 1. $M := \phi$ and i := 1. 2. Arrange edges of E in descending order of weight, starting with $e_1, e_2, ...$

 If M ∪ e_i is a valid K-valid matching, then M := M ∪ e_i. i := i + 1.

Repeat Step 3 for all edges in E.

K=1 → 2-approximation algorithm K>1 → Performance can be arbitrarily bad!

Performance of Greedy

Some Terminology

- K-hop Interference set I_K(e) of an edge e is the set of edges within K hops of e
- A subset S of I_K(e) is K-maximal if no edge e₁ belonging to I_K(e) can be added to it, while ensuring that S∪e is a K-valid matching
- K-hop interference degree d_K(e) of an edge e is defined as follows:

$$d_{K}(e) = \max_{S \subseteq I_{K}(e): S \text{ is } K-\text{maximal}}$$

March 13, 2006

FAWN 2006

Performance of Greedy (Contd.)

- More Terminology
 - K-hop interference degree of a graph G=(V,E) is defined as follows:

$$d_{K}(G) = \max_{e \in E} d_{K}(e)$$

- For a graph G, the greedy approach returns a matching whose weight is within a factor of d_K(G) of the optimal matching
- Bad News: d_K(G) can be of the order of |E|

MWKVM for Specific Graphs

Geometric graphs

- Vertices placed on the plane
- Two vertices are connected if and only if they are within distance r of each other
- Why look at geometric graphs?
 - Same power level + Same noise level → underlying connectivity graph of a wireless network is indeed geometric!

Results can easily be extended to disk graphs or (r,s)-civilized graphs

Results for Geometric Graphs

- Greedy approach works quite well for geometric graphs
 - $d_{K}(G) \leq 49$ for all K and all geometric graphs G!
- Polynomial time approximation scheme (PTAS) for MWKVMP
 - Returns a matching of weight within (1+∈) of an optimal matching for any arbitrary ∈ >0, in polynomial time

Implications

- For wireless networks whose connectivity graph is geometric (using our results and those in [Lin and Shroff, INFOCOM 2005]):
 - Greedy approach (respectively, PTAS) can be used to construct a scheduling policy that guarantees a throughput within a factor of 49 (respectively, 1+∈) of the optimal, under a Khop interference model for any arbitrary K

Related Works

Node-exclusive interference model (K=1)

- Synchronous congestion control, performance of MM algorithm [Lin and Shroff, INFOCOM 2005]
- Asynchronous congestion control, performance of regulated MM algorithm [Wu and Srikant, CDC 2005] & [Bui et al., INFOCOM 2006]
- IEEE 802.11 type interference model (K=2)
 - Performance of "maximal scheduling policy" [Wu and Srikant, INFOCOM 2006]
 - Approximability results for MKVMP; PTAS and distributed approximation algorithm for MKVMP [Balakrishnan et al., IEEE JSAC 2004]
- General interference model (contention matrix based)
 - Performance of maximal scheduling policy [Chaporkar et al., Tech Report, UPenn, 2005]

Work in Progress

- Performance of maximal scheduling policy in case of geometric graphs
 - Achieves a throughput within a factor of 49 of the optimal provided no rate control is allowed and all traffic is single-hop (MAC layer)
 - Currently working on extending this result to a setting with multi-hop traffic and rate control
- Fully distributed algorithms for maximal scheduling policy
 - K=2 case is done
 - K>2 case is currently being studied

Thanks for Listening!

Questions?

March 13, 2006

FAWN 2006