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Multi-hop Wireless Networks

Characteristics:
Mutual interference between scheduled links 

variable link capacities
Capacity region of the network depends on 
routing, link activation and power allocation
Coupling across multiple layers of the protocol 
stack

Efficient operation of such networks requires a 
cross-layer design approach!
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Cross Layer Design

Optimize jointly across multiple layers of the 
protocol stack

Joint rate control, routing, and scheduling

Cross layer problems exhibit a nice decoupling 
property (see, for example, [Lin & Shroff, CDC 
2004])
The scheduling component is the central and most 
difficult element of all cross layer optimization 
frameworks
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Cross Layer Scheduling Problem

The cross layer scheduling problem is

No simple characterization possible even for 
u(P) in terms of P!
What to do?
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Imperfect Scheduling Schemes

Scheduling schemes that are within some factor 
of the optimal
Sβ-scheduling schemes: Schemes that are 
guaranteed to choose a rate vector s that 
satisfies:

Using a Sβ-scheduling scheme in the cross layer 
framework one can achieve a capacity region of β
times the optimal [Lin and Shroff, INFOCOM 
2005]
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Wireless Network Model

Fixed transmission powers
Each node transmits at some fixed power level  
when scheduled
The power level can differ across nodes

This reduces the cross layer scheduling 
problem to a combinatorial optimization 
problem

Still quite difficult to solve – requires 
centralized control!
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Interference Models

K-hop interference models
Limits interference to K hops
Links within K hops of each other cannot be 
scheduled to transmit at the same time

Consider only bidirectional links
Required by most current network and 
transport layer protocols
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K-hop Interference Models

K=1: Node Exclusive Interference Model

K=2: Models the RTS/CTS based 
communication scheme of IEEE 802.11
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Terminology

Model the wireless network as an 
undirected graph G=(V,E)

V is the set of nodes
E is the set of edges/links

A subset of edges M ⊆ E is called a K-Valid 
Matching if and only if all edges in M are at 
least K hops apart from each other

Matching = 1-valid matching
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Resulting Class of Problems

Maximum Weighted K-Valid Matching 
problem (MWKVMP)

Unweighted Version: Maximum K-Valid 
Matching Problem (MKVMP)
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What value of K is optimal?

The optimal value of K depends on many 
factors

Node density
Physical layer

For IEEE 802.11 networks (DSSS PHY), K = 2 
seems to be the best choice
For EDGE networks, K=3 performs better than K=2 
for a wide range of node densities
The ability to perform rate control also effects 
optimal K
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Hardness Results
MKVMP (decision version) is NP-Hard for K 
>1

Main Idea: Reduction from 3-CNF-SAT to 
MKVMP

CNF – conjunctive normal form
A formula is in 3-CNF if it is AND of one or 
more clauses, each of which is an OR of 
exactly three distinct literals

Example: Clause 1
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Hardness Proof
Consider K=2
Gadget used for a clause

Clause 1

Clause 2 Clause 3
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Approximability Results

Let η be such that (|V| + K |E|)η = Θ(V).  
MKVMP for K > 1 is not approximable 
within 

|V|η/2-ε for any ε > 0, unless NP = P 
|V|η-ε for any ε > 0, unless NP = ZPP

Note: Sparse graphs are not good!
Proof Technique: Reduction from 
Maximum Independent Set Problem 
(MISP) to MKVMP
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Approximability Results (Contd.)

MWKVMP is approximable within 

Proof Technique: Reduction from 
MWKVMP to Vertex Weighted Maximum 
Independent Set problem (VWMISP)
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Greedy Approach
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Performance of Greedy

K=1 2-approximation algorithm
K>1 Performance can be arbitrarily bad!

All edges have unit weight and K = 2

n branches

Greedy returns a 
matching of weight 1

Optimal 
matching is of 
weight 2n
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Performance of Greedy

Some Terminology
K-hop Interference set IK(e) of an edge e is 
the set of edges within K hops of e
A subset S of IK(e) is K-maximal if no edge e1
belonging to IK(e) can be added to it, while 
ensuring that S∪ e is a K-valid matching
K-hop interference degree dK(e) of an edge e 
is defined as follows:
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Performance of Greedy (Contd.)

More Terminology
K-hop interference degree of a graph G=(V,E) is 
defined as follows:

For a graph G,  the greedy approach returns a 
matching whose weight is within a factor of 
dK(G) of the optimal matching
Bad News: dK(G) can be of the order of |E| 
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MWKVM for Specific Graphs

Geometric graphs
Vertices placed on the plane
Two vertices are connected if and only if 
they are within distance r of each other

Why look at geometric graphs? 
Same power level + Same noise level
underlying connectivity graph of a wireless 
network is indeed geometric!

Results can easily be extended to disk 
graphs or (r,s)-civilized graphs
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Results for Geometric Graphs

Greedy approach works quite well for 
geometric graphs

dK(G) ≤ 49 for all K and all geometric graphs G!

Polynomial time approximation scheme 
(PTAS) for MWKVMP  

Returns a matching of weight within (1+∈ ) of an 
optimal matching for any arbitrary ∈ >0, in 
polynomial time
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Implications

For wireless networks whose connectivity 
graph is geometric (using our results and 
those in [Lin and Shroff, INFOCOM 2005]):

Greedy approach (respectively, PTAS) can be 
used to construct a scheduling policy that 
guarantees a throughput within a factor of 49 
(respectively, 1+∈ ) of the optimal, under a K-
hop interference model for any arbitrary K 
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Related Works

Node-exclusive interference model (K=1)
Synchronous congestion control, performance of MM algorithm [Lin 
and Shroff, INFOCOM 2005]
Asynchronous congestion control, performance of regulated MM 
algorithm [Wu and Srikant, CDC 2005] & [Bui et al., INFOCOM 
2006]

IEEE 802.11 type interference model (K=2)
Performance of “maximal scheduling policy” [Wu and Srikant, 
INFOCOM 2006] 
Approximability results for MKVMP; PTAS and distributed 
approximation algorithm for MKVMP [Balakrishnan et al., IEEE JSAC 
2004]

General interference model (contention matrix based)
Performance of maximal scheduling policy [Chaporkar et al., Tech 
Report, UPenn, 2005]
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Work in Progress
Performance of maximal scheduling policy in case 
of geometric graphs

Achieves a throughput within a factor of 49 of the 
optimal provided no rate control is allowed and all 
traffic is single-hop (MAC layer)
Currently working on extending this result to a setting 
with multi-hop traffic and rate control  

Fully distributed algorithms for maximal 
scheduling policy

K=2 case is done 
K>2 case is currently being studied
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Thanks for Listening!

Questions?


