Fault-Tolerant Power Assignment and Backbone in Wireless Networks

by

Paz Carmi, Matthew J. Katz, Michael Segal and Hanan Shpungin

Outline

- Introduction
- Model \& Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Outline

- Introduction
- Model \& Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Introduction

- Wireless Ad-Hoc Network
- Set of transceivers communicating by radio

Introduction

- Wireless Ad-Hoc Network
- Each transceiver has a transmission power $p(t)$ which results in a transmission range r_{t}

Introduction

- Wireless Ad-Hoc Network
- Transceiver s receives transmission from t only if $d(t, s) \leq r_{t}$

Introduction

- Wireless Ad-Hoc Network
- As a result a directed communication graph is induced

Outline

- Introduction
- Model \& Problems
- Fault Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Model \& Problems

- Definition
- A set T of n transceivers $t_{1}, t_{2}, \ldots, t_{n}$

Model \& Problems

- Definition
- A set T of n transceivers $t_{1}, t_{2}, \ldots, t_{n}$
- $A=A(T)=\{p(t) \mid t \in T\}$ is the power assignment

Model \& Problems

- Definition
- A set T of n transceivers $t_{1}, t_{2}, \ldots, t_{n}$
- $A=A(T)=\{p(t) \mid t \in T\}$ is the power assignment

Model \& Problems

- Definitions
- A set T of n transceivers $t_{1}, t_{2}, \ldots, t_{n}$
- $A=A(T)=\{p(t) \mid t \in T\}$ is the power assignment
- $H_{A}=\left(T, E_{A}\right)$ is the communication graph

Model \& Problems

- Definitions
- A set T of n transceivers $t_{1}, t_{2}, \ldots, t_{n}$
- $A=A(T)=\{p(t) \mid t \in T\}$ is the power assignment
- $H_{A}=\left(T, E_{A}\right)$ is the communication graph
- $C_{A}=\sum_{t \in T} p(t)=\sum_{t \in T} r_{t}^{\alpha}$ is the cost of the assignment

Model \& Problems

- Definitions
- A graph $G=(V, E)$ is k-vertex-connected if for any two nodes $u, v \in V$ there exist k-vertex-disjoint paths connecting u to v

2-vertex-connected

Model \& Problems

- Definitions
- For graph $G=(V, E)$, a subset $D \subseteq V$ is a connected backbone if G restricted to D is strongly connected and for each $t \in T \backslash D$ there exists $u \in D$ so that $e=(u, t) \in E$

Connected backbone

Model \& Problems

- Problem 1 (k-vertex-connectivity)

Input: A set T of transceivers, and a parameter $k>1$
Output: A power assignment $A(T)$ with minimal possible cost C_{A}, where H_{A} is k-vertex connected

Model \& Problems

- Problem 1 (k-vertex-connectivity)

Input: A set T of transceivers, and a parameter $k>1$
Output: A power assignment $A(T)$ with minimal possible cost C_{A}, where H_{A} is k-vertex connected
$O(k)$-approximation algorithm

Model \& Problems

- Problem 2 (connected backbone)

Input: A set T of transceivers
Output: A subset D of T and a power assignment $A(D)$ with minimal possible cost C_{A}, where H_{A} (restricted to D) is strongly connected, and for each $t \in T \backslash D$, there exists $u \in D$, such that $d(u, t) \leq r_{u}$

Model \& Problems

- Problem 2 (connected backbone)

Input: A set T of transceivers
Output: A subset D of T and a power assignment $A(D)$ with minimal possible cost C_{A}, where H_{A} (restricted to D) is strongly connected, and for each $t \in T \backslash D$, there exists $u \in D$, such that $d(u, t) \leq r_{u}$

Constant-factor approximation algorithm in $O(n \log n)$

Outline

- Introduction
- Model \& Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Fault-Tolerant Power Assignment
 - Definitions

- For each $t \in T$, let $N_{t} \subseteq T$ be a set of k closest nodes to t

Fault-Tolerant Power Assignment
 - Definitions

- For each $t \in T$, let $N_{t} \subseteq T$ be a set of k closest nodes to t

Fault-Tolerant Power Assignment
 - Definitions

- For each $t \in T$, let $N_{t} \subseteq T$ be a set of k closest nodes to t
- Let $r_{t}^{*}=\max _{i \in N_{t}} d\left(t, t^{\prime}\right)$

Fault-Tolerant Power Assignment
 - The algorithm

- Assign each $t \in T$ the range r_{t}^{*} (denote A_{k}^{\prime})
- Compute an MST of T

Fault-Tolerant Power Assignment
 - The algorithm

- Assign each $t \in T$ the range r_{t}^{*} (denote A_{k}^{\prime})
- Compute an MST of T

Fault-Tolerant Power
 Assignment
 - The algorithm

- For each edge $e=(t, s)$ of MST increase the range of the nodes in $N_{t} \cup N_{s}$ such that each node $t^{\prime} \in N_{t}$ can reach all nodes in N_{s}, and vice versa (denote A_{k})

Fault-Tolerant Power
 Assignment
 - The algorithm

- For each edge $e=(t, s)$ of MST increase the range of the nodes in $N_{t} \cup N_{s}$ such that each node $t^{\prime} \in N_{t}$ can reach all nodes in N_{t}, and vice versa (denote A_{k})

Fault-Tolerant Power
 Assignment
 - Proof sketch

- Let $r=\max \left\{r_{t}^{*}, r_{s}^{*}\right\}$
- In A_{k} each $t^{\prime} \in N_{t} \cup N_{s}$ is assigned at most $|e|+2 r$
- Case 1: $|e| \leq r$

Fault-Tolerant Power
 Assignment
 - Proof sketch

- Let $r=\max \left\{r_{t}^{*}, r_{s}^{*}\right\}$
- In A_{k} each $t^{\prime} \in N_{t} \cup N_{s}$ is assigned at most $|e|+2 r$
- Case 1: $|e| \leq r \Rightarrow \max _{t \in N_{t}, s^{\prime} \in N_{s}} d\left(t^{\prime}, s^{\prime}\right) \leq 3 r$

Fault-Tolerant Power
 Assignment
 - Proof sketch

- Let $r=\max \left\{r_{t}^{*}, r_{s}^{*}\right\}$
- In A_{k} each $t^{\prime} \in N_{t} \cup N_{s}$ is assigned at most $|e|+2 r$
- Case 2: $|e|>r$

Fault-Tolerant Power

Assignment

- Proof sketch
- Let $r=\max \left\{r_{t}^{*}, r_{s}^{*}\right\}$
- In A_{k} each $t^{\prime} \in N_{t} \cup N_{s}$ is assigned at most $|e|+2 r$
- Case 2: $|e|>r \Rightarrow \max _{t \in N_{t}, s^{\prime} \in N_{s}} d\left(t^{\prime}, s^{\prime}\right) \leq 3|e|$

Fault-Tolerant Power Assignment
 - Proof sketch

- Let $r=\max \left\{r_{t}^{*}, r_{s}^{*}\right\}$
- In A_{k} each $t^{\prime} \in N_{t} \cup N_{s}$ is assigned at most $|e|+2 r$
- Easy to see $C_{A_{k}^{*}} \leq C_{A_{k}^{*}}$

Fault-Tolerant Power
 Assignment
 - Proof sketch

- Let $r=\max \left\{r_{t}^{*}, r_{s}^{*}\right\}$
- In A_{k} each $t^{\prime} \in N_{t} \cup N_{s}$ is assigned at most $|e|+2 r$
- Easy to see $C_{A_{k}^{\prime}} \leq C_{A_{k}^{*}}$
- Kirousis et al. proved $C_{\mathrm{MST}} \leq C_{A_{1}^{*}}$

Fault-Tolerant Power
 Assignment
 - Proof sketch

- Let $r=\max \left\{r_{t}^{*}, r_{s}^{*}\right\}$
- In A_{k} each $t^{\prime} \in N_{t} \cup N_{s}$ is assigned at most $|e|+2 r$
- Easy to see $C_{A_{k}^{\prime}} \leq C_{A_{k}^{*}}$
- Kirousis et al. proved $C_{\mathrm{MST}} \leq C_{A_{1}^{*}}$
- As a result

$$
C_{A_{k}} \leq O(k) \cdot\left(C_{A_{k}^{*}}+C_{\mathrm{MST}}\right) \leq O(k) \cdot C_{A_{k}^{*}}
$$

Outline

- Introduction
- Model \& Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Connected Backbone

Power Assignment

- Definitions
- Given the MST of T, for any node $t \in T$, let $r_{t}^{M S T}$ be the size of the longest edge adjacent to t

Connected Backbone

Power Assignment

- Definitions
- Given the MST of T, for any node $t \in T$, let $r_{t}^{M S T}$ be the size of the longest edge adjacent to t

Connected Backbone

Power Assignment

- The algorithm
- Compute an MST of T

Connected Backbone

Power Assignment

- The algorithm
- Compute an MST of T

Connected Backbone

Power Assignment

- The algorithm
- Compute an MST of T
- Let D_{I} be the set of all internal nodes of MST

Connected Backbone

Power Assignment

- The algorithm
- Compute an MST of T
- Let D_{I} be the set of all internal nodes of MST
- Assign each $u \in D_{I}$ with $r_{u}^{M S T}$ (denote A)

Connected Backbone

Power Assignment

- The algorithm
- Compute an MST of T
- Let D_{I} be the set of all internal nodes of MST
- Assign each $u \in D_{I}$ with $r_{u}^{M S T}$ (denote A)

Connected Backbone

Power Assignment

- The algorithm
- Compute an MST of T
- Let D_{I} be the set of all internal nodes of MST
- Assign each $u \in D_{I}$ with $r_{u}^{M S T}$ (denote A)

Connected Backbone

Power Assignment

- Proof sketch
- Construct a power assignment B for which it holds $C_{B} \leq c_{1} \cdot C_{\text {OPT }}$ and $C_{A} \leq c_{2} \cdot C_{B}$, as a result obtaining $C_{A} \leq c \cdot C_{\text {OPT }}$
- B is derived from OPT

Connected Backbone

Power Assignment

- Proof sketch
- Let $D_{\text {OPT }}$ be the connected backbone in OPT
- For each node $v \in D_{\text {OPT }}$ let r_{v}^{O} be the transmission range of v in OPT

Connected Backbone

Power Assignment

- Proof sketch
- For each node $v \in D_{\text {OPT }}$ let T_{v} be all the nodes within distance r_{v}^{O} from v

Connected Backbone

Power Assignment

- Proof sketch
- For each node $v \in D_{\text {OPT }}$ let T_{v} be all the nodes within distance r_{v}^{O} from v

Connected Backbone

Power Assignment

- Proof sketch
- For each node $v \in D_{\text {OPT }}$ let T_{v} be all the nodes within distance r_{v}^{O} from v
- For each node $v \in D_{\text {OPT }}$ compute MST_{v} of $T_{v} \cup\{v\}$

Connected Backbone

Power Assignment

- Proof sketch
- For each node $v \in D_{\text {OPT }}$ let T_{v} be all the nodes within distance r_{v}^{O} from v
- For each node $v \in D_{\text {OPT }}$ compute MST_{v} of $T_{v} \cup\{v\}$

Connected Backbone

Power Assignment

- Proof sketch
- In B :
- Each node $v \in D_{\text {OPT }}$ is assigned $r_{v}^{B}=r_{v}^{O}$

Connected Backbone

Power Assignment

- Proof sketch
- In B :
- Each node $v \in D_{\text {OPT }}$ is assigned $r_{v}^{B}=r_{v}^{O}$

Connected Backbone

Power Assignment

- Proof sketch
- In B :
- Each node $v \in D_{\text {OPT }}$ is assigned $r_{v}^{B}=r_{v}^{O}$
- Each node $u \in T \backslash D_{\text {OPT }}$ is assigned $r_{u}^{B}=r_{u}^{\mathrm{MST}_{v}}$

Connected Backbone

Power Assignment

- Proof sketch
- $C_{B} \leq c_{1} \cdot C_{\text {OPT }}$
- Carmi et al. showed that

$$
\sum_{e \in \mathrm{MST}_{v}} \operatorname{area}\left(D_{e}\right) \leq 5 \operatorname{area}\left(\cup_{e \in \mathrm{MST}_{v}} D_{e}\right)
$$

Connected Backbone

Power Assignment

- Proof sketch
- $C_{B} \leq c_{1} \cdot C_{\text {OPT }}$
- Carmi et al. showed that

$$
\sum_{e \in \mathrm{MST}_{v}} \operatorname{area}\left(D_{e}\right) \leq 5 \operatorname{area}\left(\cup_{e \in \mathrm{MST}_{v}} D_{e}\right)
$$

Connected Backbone

Power Assignment

- Proof sketch
- $C_{B} \leq c_{1} \cdot C_{\text {OPT }}$
- Carmi et al. showed that

$$
\sum_{e \in \mathrm{MST}_{v}} \operatorname{area}\left(D_{e}\right) \leq 5 \operatorname{area}\left(\cup_{e \in \mathrm{MST}_{v}} D_{e}\right)
$$

Connected Backbone

Power Assignment

- Proof sketch
- $C_{B} \leq c_{1} \cdot C_{\text {opt }}$
- Carmi et al. showed that
$\sum_{e \in \mathrm{MST}_{v}} \operatorname{area}\left(D_{e}\right) \leq 5 \operatorname{area}\left(\cup_{e \in \mathrm{MST}_{v}} D_{e}\right)$

≤ 5

Connected Backbone

Power Assignment

- Proof sketch
- $C_{B} \leq c_{1} \cdot C_{\text {opt }}$
- Carmi et al. showed that

$$
\sum_{e \in \mathrm{MST}_{v}} \operatorname{area}\left(D_{e}\right) \leq 5 \operatorname{area}\left(\cup_{e \in \mathrm{MST}_{v}} D_{e}\right)
$$

- Using this fact we obtain

$$
C_{B}=O\left(C_{\mathrm{OPT}}\right)
$$

Connected Backbone

Power Assignment

- Proof sketch
- $C_{A} \leq c_{2} \cdot C_{B}$
- Kirousis et al. proved that given an MST assigning each node $v \in T$ with $r_{v}^{\text {MST }}$ yields a 2-factor approximation for strong-connectivity (denote $A_{S C}$)

Connected Backbone

Power Assignment

- Proof sketch
- $C_{A} \leq c_{2} \cdot C_{B}$
- Kirousis et al. proved that given an MST assigning each node $v \in T$ with $r_{v}^{\text {MST }}$ yields a 2 -factor approximation for strong-connectivity (denote $A_{\text {SC }}$)
- Using this fact we obtain

$$
C_{A} \leq C_{A_{5 C}} \leq 2 C_{A_{1}^{\circ}} \leq 2 C_{B}
$$

Connected Backbone

Power Assignment

- Proof sketch
- Therefore

$$
C_{A}=O\left(C_{\mathrm{OPT}}\right)
$$

Outline

- Introduction
- Model \& Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Summary

- Problem 1 (k-vertex-connectivity)

Input: A set T of transceivers, and a parameter $k>1$
Output: A power assignment $A(T)$ with minimal possible cost C_{A}, where H_{A} is k-vertex connected
$O(k)$-approximation algorithm

Summary

- Problem 2 (connected backbone)

Input: A set T of transceivers
Output: A subset D of T and a power assignment $A(D)$ with minimal possible cost C_{A}, where H_{A} (restricted to D) is strongly connected, and for each $t \in T \backslash D$, there exists $u \in D$, such that $d(u, t) \leq r_{u}$

Constant-factor approximation algorithm in $O(n \log n)$

Summary

- Problem 3 (k-connected backbone)

Input: A set T of transceivers, and a parameter $k>1$
Output: A subset D of T and a power assignment $A(D)$ with minimal possible cost C_{A}, where H_{A} (restricted to D) is k-vertex connected, and for each $t \in T \backslash D$, there exists $u_{1}, u_{2}, \ldots, u_{k} \in D$, such that $d\left(u_{i}, t\right) \leq r_{u_{i}}$
$O\left(k^{3}\right)$-approximation algorithm

