Fault-Tolerant Power Assignment and Backbone in Wireless Networks

by Paz Carmi, Matthew J. Katz, Michael Segal and Hanan Shpungin

Outline

- Introduction
- Model & Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Outline

- Introduction
- Model & Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

• Wireless Ad-Hoc Network

Set of transceivers communicating by radio

• Wireless Ad-Hoc Network

• Each transceiver has a transmission power p(t)which results in a transmission range r_t

• Wireless Ad-Hoc Network

• Transceiver *s* receives transmission from *t* only if $d(t,s) \le r_t$

• Wireless Ad-Hoc Network

As a result a directed communication graph is induced

Outline

- Introduction
- Model & Problems
- Fault Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Definition

• A set *T* of *n* transceivers t_1, t_2, \ldots, t_n

Definition

- A set *T* of *n* transceivers t_1, t_2, \ldots, t_n
- $A = A(T) = \{p(t) | t \in T\}$ is the power assignment

Definition

- A set *T* of *n* transceivers t_1, t_2, \ldots, t_n
- $A = A(T) = \{p(t) | t \in T\}$ is the power assignment

Definitions

- A set *T* of *n* transceivers t_1, t_2, \ldots, t_n
- $A = A(T) = \{p(t) | t \in T\}$ is the power assignment
- $H_A = (T, E_A)$ is the communication graph

Definitions

• A set *T* of *n* transceivers t_1, t_2, \ldots, t_n

- $A = A(T) = \{p(t) | t \in T\}$ is the power assignment
- $H_A = (T, E_A)$ is the communication graph
- $C_A = \sum_{t \in T} p(t) = \sum_{t \in T} r_t^{\alpha}$ is the cost of the assignment

Definitions

 A graph G = (V, E) is k-vertex-connected if for any two nodes u, v ∈ V there exist k-vertex-disjoint paths connecting u to v

Definitions

For graph G = (V, E), a subset D ⊆ V is a *connected backbone* if G restricted to D is strongly connected and for each t ∈ T \ D there exists u ∈ D so that e = (u,t) ∈ E

- **Problem 1** (*k*-vertex-connectivity)
 - Input:A set T of transceivers, and a parameter k > 1Output:A power assignment A(T) with minimal
possible cost C_A , where H_A is k-vertex
connected

- **Problem 1** (*k*-vertex-connectivity)
 - Input:A set T of transceivers, and a parameter k > 1Output:A power assignment A(T) with minimal
possible cost C_A , where H_A is k-vertex
connected

O(k)-approximation algorithm

- **Problem 2** (connected backbone)
 - *Input:* A set *T* of transceivers
 - **Output:** A subset *D* of *T* and a power assignment A(D)with minimal possible cost C_A , where H_A (restricted to *D*) is *strongly connected*, and for each $t \in T \setminus D$, there exists $u \in D$, such that $d(u,t) \leq r_u$

- **Problem 2** (connected backbone)
 - *Input:* A set *T* of transceivers
 - **Output:** A subset *D* of *T* and a power assignment A(D)with minimal possible cost C_A , where H_A (restricted to *D*) is *strongly connected*, and for each $t \in T \setminus D$, there exists $u \in D$, such that $d(u,t) \leq r_u$

Constant-factor approximation algorithm in $O(n \log n)$

Outline

- Introduction
- Model & Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Definitions

• For each $t \in T$, let $N_t \subseteq T$ be a set of k closest nodes to t

Definitions

• For each $t \in T$, let $N_t \subseteq T$ be a set of k closest nodes to t

Definitions

• For each $t \in T$, let $N_t \subseteq T$ be a set of k closest nodes to t

• Let
$$r_t^* = \max_{t \in N_t} d(t, t')$$

- The algorithm
 - Assign each $t \in T$ the range r_t^* (denote A_k)
 - Compute an MST of *T*

- The algorithm
 - Assign each $t \in T$ the range r_t^* (denote A_k)
 - Compute an MST of *T*

- The algorithm
 - For each edge e = (t, s) of MST increase the range of the nodes in $N_t \cup N_s$ such that each node $t' \in N_t$ can reach all nodes in N_s , and vice versa (denote A_k)

- The algorithm
 - For each edge e = (t, s) of MST increase the range of the nodes in $N_t \cup N_s$ such that each node $t' \in N_t$ can reach all nodes in N_t , and vice versa (denote A_k)

- Proof sketch
 - Let $r = \max\{r_t^*, r_s^*\}$
 - In A_k each $t' \in N_t \cup N_s$ is assigned at most |e|+2r
 - Case 1: $|e| \leq r$

- Proof sketch
 - Let $r = \max\{r_t^*, r_s^*\}$
 - In A_k each $t' \in N_t \cup N_s$ is assigned at most |e|+2r
 - Case 1: $|e| \le r \implies \max_{\substack{t \in N_t, s \in N_s}} d(t', s') \le 3r$

- Proof sketch
 - Let $r = \max\{r_t^*, r_s^*\}$
 - In A_k each $t' \in N_t \cup N_s$ is assigned at most |e|+2r
 - Case 2: |*e*|>*r*

- Proof sketch
 - Let $r = \max\{r_t^*, r_s^*\}$
 - In A_k each $t' \in N_t \cup N_s$ is assigned at most |e| + 2r
 - Case 2: $|e| > r \implies \max_{\substack{t \in N_t, s \in N_s}} d(t', s') \le 3 |e|$

- Proof sketch
 - Let $r = \max\{r_t^*, r_s^*\}$
 - In A_k each $t' \in N_t \cup N_s$ is assigned at most |e|+2r
 - Easy to see $C_{A_k} \leq C_{A_k^*}$

- Proof sketch
 - Let $r = \max\{r_t^*, r_s^*\}$
 - In A_k each $t' \in N_t \cup N_s$ is assigned at most |e|+2r
 - Easy to see $C_{A_{\nu}} \leq C_{A_{\nu}^*}$
 - Kirousis et al. proved $C_{\text{MST}} \leq C_{A_1^*}$

- Proof sketch
 - Let $r = \max\{r_t^*, r_s^*\}$
 - In A_k each $t' \in N_t \cup N_s$ is assigned at most |e|+2r
 - Easy to see $C_{A_{k}} \leq C_{A_{k}^{*}}$
 - Kirousis et al. proved $C_{\text{MST}} \leq C_{A_1^*}$
 - As a result

$$C_{A_k} \leq O(k) \cdot (C_{A_k^*} + C_{\text{MST}}) \leq O(k) \cdot C_{A_k^*}$$

Outline

- Introduction
- Model & Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Connected Backbone Power Assignment

Definitions

• Given the MST of *T*, for any node $t \in T$, let r_t^{MST} be the size of the longest edge adjacent to *t*

Definitions

• Given the MST of *T*, for any node $t \in T$, let r_t^{MST} be the size of the longest edge adjacent to *t*

- The algorithm
 - Compute an MST of *T*

- The algorithm
 - Compute an MST of *T*

- The algorithm
 - Compute an MST of *T*
 - Let D_I be the set of all internal nodes of MST

- The algorithm
 - Compute an MST of *T*
 - Let D_I be the set of all internal nodes of MST
 - Assign each $u \in D_I$ with r_u^{MST} (denote A)

- The algorithm
 - Compute an MST of *T*
 - Let D_I be the set of all internal nodes of MST
 - Assign each $u \in D_I$ with r_u^{MST} (denote A)

- The algorithm
 - Compute an MST of *T*
 - Let D_I be the set of all internal nodes of MST
 - Assign each $u \in D_I$ with r_u^{MST} (denote A)

- Proof sketch
 - Construct a power assignment *B* for which it holds $C_B \leq c_1 \cdot C_{\text{OPT}}$ and $C_A \leq c_2 \cdot C_B$, as a result obtaining $C_A \leq c \cdot C_{\text{OPT}}$
 - B is derived from OPT

- Proof sketch
 - Let D_{OPT} be the *connected backbone* in OPT
 - For each node $v \in D_{OPT}$ let r_v^O be the transmission range of v in OPT

- Proof sketch
 - For each node $v \in D_{OPT}$ let T_v be all the nodes within distance r_v^O from v

- Proof sketch
 - For each node $v \in D_{OPT}$ let T_v be all the nodes within distance r_v^O from v

- Proof sketch
 - For each node $v \in D_{OPT}$ let T_v be all the nodes within distance r_v^O from v
 - For each node $v \in D_{OPT}$ compute MST_v of $T_v \cup \{v\}$

- Proof sketch
 - For each node $v \in D_{OPT}$ let T_v be all the nodes within distance r_v^O from v
 - For each node $v \in D_{OPT}$ compute MST_v of $T_v \cup \{v\}$

- Proof sketch
 - In *B*:
 - Each node $v \in D_{OPT}$ is assigned $r_v^B = r_v^O$

- Proof sketch
 - In *B*:
 - Each node $v \in D_{OPT}$ is assigned $r_v^B = r_v^O$

- Proof sketch
 - In *B*:
 - Each node $v \in D_{OPT}$ is assigned $r_v^B = r_v^O$
 - Each node $u \in T \setminus D_{OPT}$ is assigned $r_u^B = r_u^{MST_v}$

Proof sketch

•
$$C_B \leq c_1 \cdot C_{\text{OPT}}$$

• Carmi et al. showed that

$$\sum_{e \in MST_v} area(D_e) \leq 5area(\bigcup_{e \in MST_v} D_e)$$

Proof sketch

$$\bullet C_B \le c_1 \cdot C_{\text{OPT}}$$

• Carmi et al. showed that

$$\sum_{e \in MST_v} area(D_e) \leq 5area(\bigcup_{e \in MST_v} D_e)$$

- Proof sketch
 - $\bullet C_{B} \leq c_{1} \cdot C_{\text{OPT}}$
 - Carmi et al. showed that

$$\sum_{e \in MST_v} area(D_e) \leq 5area(\bigcup_{e \in MST_v} D_e)$$

Proof sketch

$$C_B \leq C_1 \cdot C_{\text{OPT}}$$

• Carmi et al. showed that

$$\sum_{e \in MST_v} area(D_e) \leq 5area(\bigcup_{e \in MST_v} D_e)$$

Proof sketch

$$\bullet C_B \le c_1 \cdot C_{\text{OPT}}$$

• Carmi et al. showed that

$$\sum_{e \in MST_v} area(D_e) \leq 5area(\bigcup_{e \in MST_v} D_e)$$

• Using this fact we obtain

$$C_B = O(C_{\text{OPT}})$$

- Proof sketch
 - $\bullet C_A \leq c_2 \cdot C_B$
 - Kirousis et al. proved that given an MST assigning each node $v \in T$ with r_v^{MST} yields a 2-factor approximation for *strong-connectivity* (denote A_{SC})

- Proof sketch
 - $\bullet C_A \leq c_2 \cdot C_B$
 - Kirousis et al. proved that given an MST assigning each node $v \in T$ with r_v^{MST} yields a 2-factor approximation for *strong-connectivity* (denote A_{SC})
 - Using this fact we obtain

$$C_A \leq C_{A_{SC}} \leq 2C_{A_1^*} \leq 2C_B$$

- Proof sketch
 - Therefore

$$C_A = O(C_{\text{OPT}})$$

Outline

- Introduction
- Model & Problems
- Fault-Tolerant Power Assignment
- Connected Backbone Power Assignment
- Summary

Summary

- **Problem 1** (*k*-vertex-connectivity)
 - Input:A set T of transceivers, and a parameter k > 1Output:A power assignment A(T) with minimal
possible cost C_A , where H_A is k-vertex
connected

O(k)-approximation algorithm

Summary

• **Problem 2** (connected backbone)

Input: A set *T* of transceivers

Output: A subset *D* of *T* and a power assignment A(D)with minimal possible cost C_A , where H_A (restricted to *D*) is *strongly connected*, and for each $t \in T \setminus D$, there exists $u \in D$, such that $d(u,t) \leq r_u$

Constant-factor approximation algorithm in $O(n \log n)$

Summary

• **Problem 3** (*k*-connected backbone)

Input: A set *T* of transceivers, and a parameter k > 1

Output: A subset *D* of *T* and a power assignment A(D)with minimal possible cost C_A , where H_A (restricted to *D*) is *k*-vertex connected, and for each $t \in T \setminus D$, there exists $u_1, u_2, \ldots, u_k \in D$, such that $d(u_i, t) \leq r_{u_i}$

 $O(k^3)$ -approximation algorithm

