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* Wireless Ad-Hoc Network

* Set of transcelvers communicating by radio
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* Wireless Ad-Hoc Network

» Each transcelver has a transmission power p(t)
which results 1n a transmission range 7,
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* Wireless Ad-Hoc Network

" Transceiver s recerves transmission from ¢ only 1f

d(t,s)<r,
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* Wireless Ad-Hoc Network

" As aresult a directed communication graph 1s
induced
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Model & Problems

 Definitions

= A set Tof n transceivers t,t,,...,t,

" A= A(T) ={p(t) |t UT} 1s the power assignment

» H,=(T,E,) is the communication graph

"C, = Z p(t) = er’ 1s the cost of the assignment
@b T
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Model & Problems

 Definitions

" A graph G =(V, E) 1s k-vertex-connected 1f for
any two nodes u,v L1V there exist k-vertex-disjoint
paths connecting u to v

2-vertex-connected



Model & Problems

 Definitions

* For graph G =(V,E), a subset D L
connected backbone 1t G restricted

V is a
[ to D 1S

strongly connected and for each ¢ [

'\D

there exists u 1D so that e =(u,t) E

Connected backbone
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Input: A set T of transceivers, and a parameter £ > 1

Output: A power assignment A(7) with minimal
possible cost C,, where H , 18 k-vertex
connected
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Input: A set T of transceivers, and a parameter £ > 1

Output: A power assignment A(7) with minimal
possible cost C,, where H , 18 k-vertex
connected

O(k)-approximation algorithm
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Model & Problems

* Problem 2 (connected backbone)

Input: A set T of transceivers

Output: A subset D of T and a power assignment A(D)
with minimal possible cost C,, where H |
(restricted to D) is strongly connected, and

for each t 17\ D, there exists u 1D, such
that d(u,t)<r,

Constant-factor approximation algorithm in
O(nlogn)
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Fault-Tolerant Power
Assignment

 Definitions

* For each tUT, let N, U T be a set of k closest
nodes to ¢

=Let r = max . d(t,t)
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Fault-Tolerant Power

Assignment
* Proof sketch

= Let » =max{r, ,7, }
=In 4, each t ON[I N, is assigned at most | e|+2r

=Case 1: |el<r = max d(t,s)<3r
{ON, €1 N,

2
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* Proof sketch

= Let » =max{r, ,7, }
=In 4, each t ON[I N, is assigned at most | e|+2r

= Case2: |e>r
R



Fault-Tolerant Power

Assignment
* Proof sketch

= Let » =max{r, ,7, }
=In 4, each t ON[I N, is assigned at most | e|+2r

=Case2: |e|>r = max d(t,s)<3|e]
{ON, €1 N,

Y
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* Proof sketch

= Let » =max{r, ,7, }
=In 4, each t ON[I N, is assigned at most | e|+2r
" Easytosee C, =C.
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Fault-Tolerant Power

Assignment
* Proof sketch

= Let » =max{r, ,7, }

=In 4, each t ON[I N, is assigned at most | e|+2r
" Easy to see CA,L < CAZ

» Kirousis et al. proved Cy;p <C i

= As aresult

C, SOU)TC . +Cysy) <O(k)
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= Given the MSTof T, for any node t T, let I;MST
be the size of the longest edge adjacent to ¢

MST
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Connected Backbone

Power Assignment

* The algorithm

= Compute an MST of T
= Let D, be the set of all internal nodes of MST
= Assign each u 0D, with 7" (denote A4)

4



Connected Backbone

Power Assignment
* Proof sketch

= Construct a power assignment B for which
it holds C, < ¢, LC,r and C, < ¢, [C,,
as a result obtaining C, < cLC,;

" B s derived from OPT



Connected Backbone

Power Assignment

 Proof sketch

" Let D,pr be the connected backbone in OPT
= For each node vO D, let 7 be the transmission
range of v in OPT
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* For each node vU D, let T be all the nodes

within distance 7” from v
= For each node vU D,,, compute MST of 7, LI{v}
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Connected Backbone

Power Assignment

 Proof sketch

" In B:

e Fach node vOD... is assiened 7% = r°
OPT V v

* Each node u T \ D, is assigned ”uB — ruMSTV
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" Cy < L0,
e Carmi et al. showed that

area(D,) < Sarea(U ysr D,)

eDMST

S
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Power Assignment
* Proof sketch

. B S Cl |]'ijPT
e Carmi et al. showed that

area(D,) < Sarea(U s D,)

eDMST

é ¢
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Power Assignment
* Proof sketch

. B S Cl EOPT
e Carmi et al. showed that

ZeDMSTV area(D,) < Sarea(U sy D, )

+‘+‘+‘ <5




Connected Backbone

Power Assignment
* Proof sketch

" Cy < L0,
e Carmi et al. showed that

ZeDMSTV area(D,) < Sarea(U pysr D,)

 Using this fact we obtain

Cp = O(Copr)
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V

a 2-factor approximation for strong-connectivity
(denote Ag.-)



Connected Backbone

Power Assignment

 Proof sketch

=C,<c O,

* Kirousis et al. proved that given an MST

assigning each node vOT with ™" yields

V

a 2-factor approximation for strong-connectivity
(denote A.)
 Using this fact we obtain

C,<C

ASC

<2C, £2C,



Connected Backbone

Power Assignment
* Proof sketch

= Therefore

CA = O(COPT)
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Summary

* Problem 1 (k-vertex-connectivity)

Input: A set T of transceivers, and a parameter £ > 1

Output: A power assignment A(7T) with minimal
possible cost C,, where H , 18 k-vertex
connected

O(k)-approximation algorithm



Summary

* Problem 2 (connected backbone)

Input: A set T of transceivers

Output: A subset D of T and a power assignment A(D)
with minimal possible cost C,, where H |
(restricted to D) is strongly connected, and

for each t T \ D, there exists u 1D, such
that d(u,t)<r,

Constant-factor approximation algorithm in
O(nlogn)



Summary

* Problem 3 (k-connected backbone)

Input: A set T of transceivers, and a parameter £ > 1

Output: A subset D of T and a power assignment A(D)
with minimal possible cost C,, where H |
(restricted to D) 1s k-vertex connected, and
for each t T\ D, there exists u,,u,,...,u, LD,
such that d(u;,t)<r,

O(k*)-approximation algorithm






