Routing Algorithm for the Highly Dynamic Network

Edwin Soedarmadji edwin@systems.caltech.edu Robert J. McEliece rjm@systems.caltech.edu

California Institute of Technology Pasadena, CA 91125, USA

Dynamic Networks

- □ Nodes and edges enter and leave the network
- Defined by a set of assumptions, i.e., mobility model

The Problem

- □ Is there a **reliable** message-passing algorithm for a highly dynamic network with node and edge mobility?
- □ Two general strategies for message-passing (routing, flooding)
- Despite its disadvantages, flooding is more reliable for message-passing on dynamic networks.
- The CounterFlooding [Odell & Wattenhofer 2005] algorithm works for dynamic networks with edge mobility. Can it be extended to the networks with node mobility?

Notations

- □ The dynamic graph G(t) consists of dynamic nodes V(t) and edges E(t) with the source node denoted by v_0 and the set of all destination nodes denoted by V_d
- The total number of nodes is upper bounded by \bar{V}
- $\Box \quad \text{The set } V(t) \text{ contains all} \\ \text{nodes with degree } > 0$
- □ The nodes v_1 and $v_2 \in V(t)$ are connected if a message with infinite speed from v_1 can reach v_2
- □ The neighboring nodes of a node v at time t is denoted by N(v,t)

Routing in the HDN

Notations

Routing in the HDN

Events

(a) The connectivity-driven events c = c(v,t)Denote by $C_v = \{ t \mid N(v,t-\epsilon) \neq N(v,t+\epsilon) \}$ the set of all events c(v,t) at a given v. Thus, C_v contains v's local vertex events. Denote by $C = \bigcup_v C_v$ the network global events. The events c(v,0) mark the "creation" of G(t).

(b) The message-driven events m(v,t) are triggered at v when a new message m from $v' \neq v$ is received. Beside nodes, messages are also network moving parts as they move between the nodes in G. Denote by M_v the set of m(v,t), and M the global counterpart.

Previous assumptions

- 1. Edge mobility, but not node mobility, i.e., V(t) = V,
- 2. E(t) is such that G(t) stays connected at all time,
- 3. Any change $\Delta E(t)$ in E(t) instantaneously triggers connectivity-driven events at all the nodes affected,
- 4. Adjacent nodes can pass messages in less than τ ,
- 5. Consecutive events in C_v are separated by at least τ ,
- 6. Nodes store the messages they receive, and
- 7. Nodes know the value of \overline{V}

HDN assumptions

- 1. Node and edge mobility,
- 2. E(t) is such that each node d in V_d stays connected to at least one node v in $V_{\bullet}(t)$ at all time,
- 3. Events in C_v may be delayed from $\Delta E(t)$,
- 4. Adjacent nodes can pass messages in less than τ ,
- 5. Consecutive events in C_v are separated by at least τ ,
- 6. Nodes store the messages they receive for τ_m , and
- 7. Nodes know the value of \overline{V}

CF Algorithm

- 1: if message m(v, t) is received for the first time then
- 2: Broadcast message m
- 3: $k \leftarrow 0$
- 4: end if
- 5: if event c(v, t) is received then

6: if
$$k < 2\bar{V}$$
 then

7: Broadcast message m

8:
$$k \leftarrow k+1$$

- 9: end if
- 10: end if

CF works for HDN

Lemma 1 $|V_{\bullet}(t+2\tau)| > |V_{\bullet}(t)|$ when $V_d \cap V_{\circ}(t) \neq \emptyset$.

Theorem 1 The algorithm CF solves the HDN problem and terminates in less than $2 \tau \overline{V}$.

Figure 3: $V_{\bullet}(d, t)(\uparrow)$, $V_{\circ}(d, t)(\downarrow)$, E(d, t), and V_d .

Figure 4: Two possible orders between t, t_c , and t_m

 \blacktriangleright 2. E(t) is such that each node d in V_d stays connected to at least one node v in $V_{\bullet}(t)$ at all time,

Figure 6: The arrows indicate allowable transitions of the network nodes in the sets $V_{\circ}(t)$, $V_{\bullet}(t)$, V(t), and $V \setminus V(t)$ for HDN.

Proof of Theorem 1

Lemma 1 $|V_{\bullet}(t+2\tau)| > |V_{\bullet}(t)|$ when $V_d \cap V_{\circ}(t) \neq \emptyset$.

Theorem 1 The algorithm CF solves the HDN problem and terminates in less than $2 \tau \overline{V}$.

Questions?